Neighbor Discovery Algorithm Based on the Regulation of Duty-Cycle in Mobile Sensor Network

نویسندگان

  • Jinbao Li
  • Jian Yang
  • Yanqing Zhang
  • Longjiang Guo
  • Yingshu Li
چکیده

The Neighbor Discovery is a process by which a node identifies its neighbor nodes in its vicinity. We are particular interested in Neighbor Discovery problem in duty-cycle mobile sensor networks in this paper, where a mobile sensor needs to detect its neighbor nodes during its wake-up states. We proposed an algorithm which utilizes the boundary nodes in the communication range of the node to predict potential neighbor nodes, applies passion point process to predict the number of nodes in communication range of the node, regulates the duty-cycle of the node based on the model of balls and boxes, and then schedules the waking time of the node periodically by using the duty-cycle which is regulated to finish the detection. Finally, theoretical analysis and simulation experiments indicate that the proposed algorithm can discover more neighbor nodes in the short period with less energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Efficiency and Reliability in Underwater Wireless Sensor Networks Using Cuckoo Optimizer Algorithm

Energy efficiency and reliability are widely understood to be one of the dominant considerations for Underwater Wireless Sensor Networks (UWSNs). In this paper, in order to maintain energy efficiency and reliability in a UWSN, Cuckoo Optimization Algorithm (COA) is adopted that is a combination of three techniques of geo-routing, multi-path routing, and Duty-Cycle mechanism. In the proposed alg...

متن کامل

A JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS

Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

A Cellular Automaton Based Algorithm for Mobile Sensor Gathering

In this paper we proposed a Cellular Automaton based local algorithm to solve the autonomously sensor gathering problem in Mobile Wireless Sensor Networks (MWSN). In this problem initially the connected mobile sensors deployed in the network and goal is gather all sensors into one location. The sensors decide to move only based on their local information. Cellular Automaton (CA) as dynamical sy...

متن کامل

A multiple criteria algorithm for planning the itinerary of mobile sink in wireless sensor networks

The mobile sink can increase the efficiency of wireless sensor networks. It moves in a monitored environment and collects the network nodes information. Thus, by the sink we can balance the power consumption and increases the network lifetime. Determining path of the sink's movement is usually modeled as an optimization problem where finding optimal solutions require collecting value of all the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013